首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1775篇
  免费   107篇
  国内免费   6篇
测绘学   76篇
大气科学   136篇
地球物理   383篇
地质学   714篇
海洋学   134篇
天文学   287篇
综合类   8篇
自然地理   150篇
  2023年   12篇
  2022年   10篇
  2021年   29篇
  2020年   46篇
  2019年   44篇
  2018年   56篇
  2017年   77篇
  2016年   90篇
  2015年   60篇
  2014年   58篇
  2013年   119篇
  2012年   79篇
  2011年   96篇
  2010年   108篇
  2009年   99篇
  2008年   102篇
  2007年   90篇
  2006年   92篇
  2005年   84篇
  2004年   87篇
  2003年   58篇
  2002年   61篇
  2001年   35篇
  2000年   23篇
  1999年   38篇
  1998年   20篇
  1997年   15篇
  1996年   16篇
  1995年   6篇
  1994年   20篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
  1973年   3篇
排序方式: 共有1888条查询结果,搜索用时 15 毫秒
41.
We present new and reprocessed seismic reflection data from the area where the southeast and southwest Greenland margins intersected to form a triple junction south of Greenland in the early Tertiary. During breakup at 56 Ma, thick igneous crust was accreted along the entire 1300-km-long southeast Greenland margin from the Greenland Iceland Ridge to, and possibly 100 km beyond, the triple junction into the Labrador Sea. However, highly extended and thin crust 250 km to the west of the triple junction suggests that magmatically starved crustal formation occurred on the southwest Greenland margin at the same time. Thus, a transition from a volcanic to a non-volcanic margin over only 100–200 km is observed. Magmatism related to the impact of the Iceland plume below the North Atlantic around 61 Ma is known from central-west and southeast Greenland. The new seismic data also suggest the presence of a small volcanic plateau of similar age close to the triple junction. The extent of initial plume-related volcanism inferred from these observations is explained by a model of lateral flow of plume material that is guided by relief at the base of the lithosphere. Plume mantle is channelled to great distances provided that significant melting does not take place. Melting causes cooling and dehydration of the plume mantle. The associated viscosity increase acts against lateral flow and restricts plume material to its point of entry into an actively spreading rift. We further suggest that thick Archaean lithosphere blocked direct flow of plume material into the magma-starved southwest Greenland margin while the plume was free to flow into the central west and east Greenland margins. The model is consistent with a plume layer that is only moderately hotter, 100–200°C, than ambient mantle temperature, and has a thickness comparable to lithospheric thickness variations, 50–100 km. Lithospheric architecture, the timing of continental rifting and viscosity changes due to melting of the plume material are therefore critical parameters for understanding the distribution of magmatism.  相似文献   
42.
The granulometric composition of terrigenous deep-sea sediments provides information on current speed if certain frame conditions are fulfilled. These include that current transport is the only transport process. At high latitudes this type of investigation is impaired due to the influence of ice-rafted debris (IRD) which contaminates the current-sorted grain size fractions. This study presents a new method that addresses this problem by setting the ice-rafted sand in relation to the silt of both current- and ice-transported origin. Deviations from the resulting regression function are then used to determine the behaviour of the silt mean grain size as a function of current speed largely independent from IRD bias. The study is based on sediments from the Yermak Plateau, Arctic Ocean, a region influenced by IRD brought with the south-headed Transpolar Drift and by north-directed bottom currents. The IRD correction results in displaying changes of current speed at much higher clarity; climate forcing of the currents becomes more evident. For example, the 8200 year cold event shows up as a major event in the corrected record whereas it is hardly visible in the original record.  相似文献   
43.
In the Haushi-Huqf (Eastern Central Oman) as in other parts of the Arabian platform, a major sedimentary break is recorded between the Early Aptian carbonates (Shu'aiba Formation) and the Albian orbitolinid-rich marls (Nahr Umr Formation). The unconformity corresponds to a succession of events: (1) a brusque interruption of the regressive sequence of the Shu'aiba limestone (algae and small rudistid build-ups); (2) a stratigraphic gap related to the Late Aptian; (3) the development of a thick ferruginous crust (hardground) that covered the top surface of the Shu'aiba; the hardground is related to a forced flooding surface; (4) the Shu'aiba was rapidly drowned and buried under the Nahr Umr marls. Moreover, the Shu'aiba limestone was subject to faulting NW–SE-trending normal faults before lithification and formation of the ferruginous crust. The faulting episode is clearly dated: post-Early Aptian and pre-Albian. The signification of the faulting remains hypothetical. The syndiagenetic NW–SE normal faults may correspond to ‘en echelon’ faults, combined with transcurrent fault movements (for example the Haushi-Nafun Fault). The possible causes of these intra-platform transcurrent movements are discussed. To cite this article: C. Montenat, P. Barrier, C. R. Geoscience 334 (2002) 781–787.  相似文献   
44.
The Precambrian massif of Ourika is crosscut by two systems of basic dykes, striking N40°E and N90–120°E. Using incompatible trace elements, the two systems form two distinct chemical groups, displaying a continental tholeiitic affinity. The composition variations between the two defined groups can be due to heterogeneities of mantle sources and to contamination, during the magma ascent, by the continental crust. The emplacement of these basic dykes, before the late-PIII formations, can be related to the Neoproterozoic distension generalised to the Anti-Atlas chain. To cite this article: A. Barakat et al., C. R. Geoscience 334 (2002) 827–833.  相似文献   
45.
An integrated groundwater/surface water hydrological model with a 1 km2 grid has been constructed for Denmark covering 43,000 km2. The model is composed of a relatively simple root zone component for estimating the net precipitation, a comprehensive three-dimensional groundwater component for estimating recharge to and hydraulic heads in different geological layers, and a river component for streamflow routing and calculating stream–aquifer interaction. The model was constructed on the basis of the MIKE SHE code and by utilising comprehensive national databases on geology, soil, topography, river systems, climate and hydrology. The present paper describes the modelling process for the 7330 km2 island of Sjælland with emphasis on the problems experienced in combining the classical paradigms of groundwater modelling, such as inverse modelling of steady-state conditions, and catchment modelling, focussing on dynamic conditions and discharge simulation. Three model versions with different assumptions on input data and parameter values were required until the performance of the final, according to pre-defined accuracy criteria, model was evaluated as being satisfactory. The paper highlights the methodological issues related to establishment of performance criteria, parameterisation and assessment of parameter values from field data, calibration and validation test schemes. Most of the parameter values were assessed directly from field data, while about 10 ‘free’ parameters were subject to calibration using a combination of inverse steady-state groundwater modelling and manual trial-and-error dynamic groundwater/surface water modelling. Emphasising the importance of tests against independent data, the validation schemes included combinations of split-sample tests (another period) and proxy-basin tests (another area).  相似文献   
46.
Direct-current (DC) resistivity tomography has been applied to different mountain permafrost regions. Despite problems with the very high resistivities of the frozen material, plausible results were obtained. Inversions with synthetic data revealed that an appropriate choice of regularization constraints was important, and that a joint analysis of several tomograms computed with different constraints was required to judge the reliability of individual features. The theoretical results were verified with three field experiments conducted in the Swiss and the Italian Alps. At the first site, near Zermatt, Switzerland, the location and the approximate lateral and vertical extent of an ice core within a moraine could be delineated. On the Murtel rock glacier, eastern Swiss Alps, a steeply dipping boundary at its frontal part was observed, and extremely high resistivities of several MΩ indicated a high ice content. The base of the rock glacier remained unresolved by the DC resistivity measurements, but it could be constrained with transient EM soundings. On another rock glacier near the Stelvio Pass, eastern Italian Alps, DC resistivity tomography allowed delineation of the rock glacier base, and the only moderately high resistivities within the rock glacier body indicated that the ice content must be lower compared with the Murtel rock glacier.  相似文献   
47.
48.
Mafic high-pressure granulite, eclogite and pyroxenite xenoliths have been collected from a Mesozoic volcaniclastic diatreme in Xinyang, near south margin of the Sino-Korean Craton (SKC). The high-pressure granulite xenoliths are mainly composed of fine-grained granoblasts of Grt+Cpx+Pl+Hbl±Kfs±Q±Ilm with relict porphyritic mineral assemblage of Grt+Cpx±Pl±Rt. PT estimation indicates that the granoblastic assemblage crystallized at 765–890 °C and 1.25–1.59 GPa, corresponding to crustal depths of ca. 41–52 km with a geotherm of 75–80 mW/m2. Calculated seismic velocities (Vp) of high-pressure granulites range from 7.04 to 7.56 km/s and densities (D) from 3.05 to 3.30 g/cm3. These high-pressure granulite xenoliths have different petrographic and geochemical features from the Archean mafic granulites. Elevated geotherm and petrographic evidence imply that the lithosphere of this craton was thermally disturbed in the Mesozoic prior to eruption of the host diatreme. These samples have sub-alkaline basaltic compositions, equivalent to olivine– and quartz–tholeiite. REE patterns are flat to variably LREE-enriched (LaN/YbN=0.98–9.47) without Eu anomaly (Eu/Eu*=0.95–1.11). They possess 48–127 ppm Ni and 2–20 ppm Nb with Nb/U and La/Nb ratios of 13–54 and 0.93–4.75, respectively, suggesting that these high-pressure granulites may be products of mantle-derived magma underplated and contaminated at the base of the lower crust. This study also implies that up to 10 km Mesozoic lowermost crust was delaminated prior to eruption of the Cenozoic basalts on the craton.  相似文献   
49.
The Permocarboniferous basins in Northeast Germany formed on the heterogeneous and eroded parts of the Variscan orogene and its deformed northern foreland. Transtensional tectonic movements and thermal re-equilibration lead to medium-scale crustal fragmentation, fast subsidence rates and regional emplacement of large amounts of mostly acidic volcanics. The later basin formation and differentiation was triggered by reversals of the large-scale stress field and reactivation of prominent zones of weakness like the Elbe Fault System and the Rhenohercynian/Saxothuringian boundary that separate different Variscan basement domains in the area. The geomechanical behaviour of the latter plays an important role for the geodynamic evolution of the medium to large-scale structural units, which we can observe today in three dimensions on structural maps, geophysical recordings and digital models. This study concentrates on an area that comprises the southern Northeast German Basin, the Saale Basin, the Flechtingen High, the Harz Mountains High and the Subhercynian Basin. The presented data include re-evaluations of special geological and structural maps, the most recent interpretation of the DEKORP BASIN 9601 seismic profile and observations of exposed rock sections in Northeast Germany. On the basis of different structural inventories and different basement properties, we distinguish two structural units to the south and one structural unit to the north of the Elbe Fault System. For each unit, we propose a geomechanical model of basin formation and basin inversion, and show that the Rhenohercynian Fold and Thrust Belt domain is deformed in a thin-skinned manner, while the Mid-German Crystalline Rise Domain, which is the western part of the Saxothuringian Zone, rather shows a thick-skinned deformation pattern. The geomechanical model for the unit north to the Elbe Fault System takes account to the fact that the base of the Zechstein beneath the present Northeast German basin shows hardly any evidence for brittle deformation, which indicates a relative stable basement. Our geomechanical model suggests that the Permocarboniferous deposits may have contributed to the structural stiffness by covering small to medium scale structures of the upper parts of the brittle basement. It is further suggested that the pre-Zechstein successions underneath the present Northeast German basin were possibly strengthening during the Cretaceous basin inversion, which resulted in stress transfer to the long-lived master faults, as indicated for example by the shape of the salt domes in the vicinity of the latter faults. Contrary to this, post-Zechstein successions deformed in a different and rather complex way that was strongly biased by intensive salt tectonic movements.  相似文献   
50.
The Darwin Rise has been proposed so many times and in so many forms and places that the time has come to make a more comprehensive examination of the region. Lying on the NW Pacific Plate between the Geisha Guyots, the Mid-Pacific Mountains, the equator, and the trenches, the region is roughly bounded by magnetic anomaly M20 (147 Ma). It was subjected to a massive outpouring of lava about 105 to 120 Ma, which created the guyots and seamounts in that region. Guyots are excellent tools for studying events of long ago because they eroded in the same lowstand in the Cretaceous and guyot relief, therefore, is a surrogate for paleo-sealevel. The relief is derived by subtracting the break depth of the summit plateau of a guyot from the regional depth. Guyot relief would necessarily be less in the center than to the periphery if the feature formed on a pre-existing rise, as has been postulated. The existence of a paleo-Darwin Rise would give concentric contours for the region in question. Of the sixty guyots used in this study, thirty-seven of these guyots were surveyed using SASS multibeam in the Marcus-Wake seamount group. Twenty-three guyots were surveyed using random track single-beam sonar surveys. An entirely different scenario is shown. Data revealed a major fracture passing through the area coevally or after the guyots formed. Because the depths to the summit are not the same now, vertical tectonics occurred after subaerial erosion. This means the fracture formed during and after the erosion (roughly 105 Ma) and influenced the normal sequence of events in guyot formation. Depending on how one deciphers trends through the Hess Rise morass, SASS bathymetry shows a continuation of the Surveyor/Mendocino fracture zone swarm inside the M20 region to the NE of these data. The fracture swarm continues to the western Pacific trench system. Based on this information, if the Darwin Rise ever existed, it had to have done so elsewhere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号